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Abstract—As battery-powered mobile devices become more
popular and energy hungry, wireless power transfer technology
receives intensive interests, as it allows the power to be trans-
ferred from a charger to ambient devices wirelessly. The existing
studies mainly focus on the power transfer efficiency but overlook
the health impairments caused by RF exposure. In this paper,
we study the Safe Charging Problem (SCP) of scheduling power
chargers so that more energy can be received while no location
in the field has electromagnetic radiation (EMR) exceeding a
given threshold Rt. We prove that SCP is NP-hard and propose a
solution which provably outperforms the optimal solution to SCP
with a relaxed EMR threshold (1 − ǫ)Rt. Testbed results based
on 8 Powercast TX91501 chargers validate our results. Extensive
simulation results show that the gap between our solution and
the optimal one is only 6.7% when ǫ = 0.1, while a naive greedy
algorithm is 34.6% below our solution.

I. INTRODUCTION

As battery-powered mobile and portable devices become

more popular and energy-hungry, energy conservation and

scavenging schemes are increasingly important for the device

usability. Among all such schemes, wireless power transfer

technology [1] attracts intensive research and industry interest

due to its convenience in applications. With this technology,

energy can be transferred wirelessly from an energy storage

to consuming devices such as RFIDs [2], sensors [3], cell

phones [4], laptops [5], vehicles [6] and unmanned planes [7].

According to a recent report, the wireless power transfer

market is expected to grow to US$23.7 billion in 2015 [8].

In existing studies, researchers focused more on the energy

charging efficiency and ubiquitousness, targeting at the mini-

mal number of active chargers with more charging coverage

(e.g., [9]–[20]). In practice, however, this is far from enough.

Besides the charging efficiency, a more critical issue is the

safety of the electromagnetic radiation (EMR). Though no

study results have generally provided clear evidence of a

relationship between EMR and the health impairments, there

have been some statistically significant findings in certain

positive cases. Exposure to high EMR [21] has been widely

identified as a threat to human health. Its potential risks include

but not limited to tissue impairment [22], brain tumor [23] and

mental diseases [24]. Sec. II will give a more comprehensive

survey on EMR safety issues and related regulations in the

worldwide. A validated wireless charging scheme must comply

with these regulations and guarantee the EMR safety in the

field. No location should have the EMR value exceeding

certain safety threshold.

With this practical and critical concern, in this paper, we

propose and study the safe charging problem, attempting to

strike the best tradeoff between the charging efficiency and

EMR safety. Given a set of wireless power chargers and

rechargeable devices, we are seeking the charger scheduling

scheme so that the devices can obtain more power, while no

location exceeds the EMR safety threshold.

Safe charging is a quite challenging problem which in

general is NP-hard. The challenges are mainly due to the

fact that the EMR constraints are imposed on every point in

the field, which inevitably results in an infinite number of

constraints. In addition, as we will show in later sections,

the objective function is a non-convex one, which prevents

the classical optimization method from applying directly. To

overcome these challenges, we design constraint conversion

and reduction techniques and apply approximation approaches,

which enable us to transfer the problem to a traditional

multidimensional 0/1 knapsack problem [25] and a Fermat-

Weber problem [26], i.e., to find the optimal activation set

of chargers maximizing the overall charging power under a

limited number of constraints, and to find the point with the

maximum EMR for a given active charger set. The constraints

of the first problem are actually derived based on the outputs

of the second problem.

The main contributions of this paper are as follows:

• To the best of our knowledge, this is the first work that

considers charging efficiency under EMR safety concern.

We formulate the problem as Safe Charging Problem

(SCP), and prove that it is NP-hard.

• To deal with the problem, we design a series of novel

techniques to transfer the problem to two traditional prob-

lems, namely a multidimensional 0/1 knapsack problem

and a Fermat-Weber problem. The techniques include

constraint conversion and reduction, bounded EMR func-

tion approximation, area discretization and expansion,

and a tailored Fermat-Weber algorithm.

• We prove that for any given small number ǫ, our solution

outperforms the optimal solution to SCP with a relaxed

EMR threshold (1− ǫ)Rt, where Rt is the original EMR

threshold.

• To evaluate the performance of our algorithm, we build

a testbed composed of 8 Powercast TX91501 chargers.

Experimental results show that the maximal EMR in the



field is 116.7µW/cm2, which is just below the safety

threshold of 125µW/cm2. We also conduct comprehen-

sive simulations and the gap between our solution and the

optimal one is only 6.7% when ǫ = 0.1, while a naive

greedy algorithm is 34.6% below our solution.

The remainder of the paper is organized as follows. In Sec.

II, we elaborate on the motivation of this work. In Sec. III, we

give preliminaries and a formal definition of the SCP problem.

We introduce a near optimal solution to SCP in Sec. IV based

on the theoretical results of MEP computation in the next

section. Then, we present an approximation algorithm to MEP

computation in Sec. V. Sec. VI and Sec. VII present extensive

simulations and testbed experiments to verify our theoretical

results. Sec. VIII reviews related work and Sec. IX concludes.

II. MOTIVATION

In this section, we give a review of the risk of RF exposures

and present some related regulations.

For the risk of RF exposures, there has been a significant

body of research that focuses on the biological effects of RF

signals on human body. For example, Olteanu et al. [22]

investigated the harmful effect of metallic implant heating

resulted from EMR around, which may lead to impairment of

tissues. And it is reported that heating of tissue that exceeds 1

degree centigrade may interfere with behavioral and biological

functions [27]. Gandhi et al. [28] found that children’s heads

absorb over two times of RF than adults, and absorption of

the skull’s bone marrow can be ten times greater than adults.

Tissues of the fetus, such as the central nervous system, seem

especially vulnerable to temperature rises caused by high EMR

in various time windows, particularly during organogenesis

[29]. Changes on gene/protein expression by RF exposure are

also investigated. Leszczynskis group performed a pilot study

on volunteers and showed that mobile phone radiation might

alter protein expression in human skin cells [30]. Nittby et

al. [31] found that a large number of genes were altered at

hippocampus and cortex using four exposed and four control

animals. Though no actual experiments have been conducted

concerning the potential harm to people, a plenty of clinical

studies such as [23] showed an increased risk of high EMR

exposure for brain tumors. Besides, the link between RF expo-

sure and mental diseases has also been confirmed. Experiments

done on mice [24] showed that EMR causes transient and

cumulative impairments in spatial and non-spatial memory.

Concerns about adverse consequences of EMR exposure

have resulted in the establishment of exposure limits. These

limits are codified in Title 47 of the Code of Federal Reg-

ulations (CFR) in the United States and Hygienic Standard

for Environmental Electromagnetic Waves GB9175-88 [32] in

China, and also contained in standards published by the In-

ternational Commission on Non-Ionizing Radiation Protection

(ICNIRP) [21] in most of Europe. For instance, the maximum

allowed power density for frequency 915MHz, the commonly

used frequency band for wireless power transfer, by CFR,

GB9175-88 and ICNIRP are 610µW/cm2, 40µW/cm2 and

457.5µW/cm2, respectively.
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Fig. 1. EMR vs. Received Power

III. PROBLEM STATEMENT

Given the above concerns of the impairments of EMR, a

desired charging scheme should strike a balance between the

EMR limit and charging efficiency. In this paper, we assume all

the chargers and rechargeable devices are static and deployed

in fixed, known locations. In addition, we consider a simplified

charger scheduling model in which chargers can be only

in either of the on/off states. More complicated deployment

schemes (e.g., mobile chargers) and scheduling models (e.g.,

adjustable charger power) are left for future work.

Ideally, the charging scheme should on one hand maximize

the charging efficiency so that more charging energy can be

harvested by the rechargeable devices, and on the other hand

ensure the safety of the field by limiting the intensity of

EMR at every position in the field. To achieve this goal, we

will formulate the problem and propose our solutions in the

remainder of this paper. In this section, we will first give

the system and charging model, and then provide the formal

problem statement. In the last of this section, we will present

the main challenges we face when addressing the problem.

A. System and charging model

Assume there is a set of n identical stationary wireless

power chargers S = {s1, s2, . . . , sn} deployed on a two-

dimensional plane, and we have a set of m rechargeable

devices O = {o1, o2, . . . , om} in the field too. The devices

are capable of harvesting the wireless power originated from

chargers to maintain their normal working.

In general, both the wireless charging power and the EMR

intensity are related to the energy field strength. The received

power Pr(d) by a device can be quantified by an empirical

model [13], i.e.,

Pr(d) =

{

α
(d+β)2 , d ≤ D

0, d > D
(1)

where d is the distance from the charger to the receiver, and

α and β are known constants determined by hardware of the

charger and the receiver and the environment. Because of the

hardware constraint, the energy field far away from the charger

will be too small to be received by a node, and we use D to

denote the farthest distance a charger can reach.

For the charging, we assume the wireless power from

multiple chargers to a receiver is additive [13], and define

the charging utility to be proportional to the charging power,



TABLE I
NOTATIONS

Symbol Meaning

si, S Charger i, charger set
oj , O Device j, device set
Pr(d) Received power from distance d

D Farthest distance a charger can reach
d(si, oj) Distance from charger si to device oj
d(si, p) Distance from charger si to point p
u(oj) Charging utility of device oj
u(si) Charging utility provided by charger si

e(d), e(p) EMR from distance d, EMR at point p
xi Binary indicator denotes whether charger si is

active or not
Rt Hard threshold of EMR safety
Γ List of effective active charger sets

namely

u(oj) = c1

n
∑

i=1

Pr(d(si, oj))

where d(si, oj) is the distance from the charger si to the device

oj , and c1 is a predetermined constant.

Similarly, for all rechargeable devices, a charger si can

provide charging utility as

u(si) = c1

m
∑

j=1

Pr(d(si, oj)).

For the intensity of EMR, intuitively it is proportional to

the received power there. To verify this intuition, we conduct

field experiment studies. As shown in Fig. 1, the EMR is nearly

proportional to the received power, which can be modeled by

e(d) = c2Pr(d) where d is the distance and c2 is the constant

to capture the linear relation. Assuming EMR is also additive,

the accumulated EMR at a location p is thus

e(p) =
∑

si∈S
e(d(si, p)) = c2

∑

si∈S
Pr(d(si, p)). (2)

Some symbols and notations used in this paper are summa-

rized in Table 1.

B. Problem statement

We start with the following decision problem: given an

active charger set S, is the EMR safety violated? To answer

this question, we have to examine every point on the plane to

ensure no place will have the EMR exceeding the hard thresh-

old of EMR safety, which we denote by Rt. Mathematically,

we can express the decision problem as follows

∀p ∈ R
2, c2

∑

si∈S
Pr(d(si, p)) ≤ Rt.

Let xi be a binary indicator that denotes whether charger

si is active or not. For an active charger set specified by xi,

the above inequality can be rewritten as follows

∀p ∈ R
2, c2

∑n

i=1
Pr(d(si, p))xi ≤ Rt.

s2s1 s3

s2s1 s2s1 s3

s2s1

Maximal EMR point

Active charger set

Fig. 2. An illustrative example of constraint conversion. For the set of
active chargers s1 and s2, there will be a maximal EMR point (MEP) located
between s1 and s2, and a corresponding constraint. Different active charger
sets will have different MEPs

This inequality actually serves as the constraint of our

problem. On the other hand, our optimization goal is to

maximize the overall charging utility from all the chargers,

namely,
∑n

i=1 u(si)xi. The Safe Charging Problem (SCP) can

thus be defined as follows

(SCP) max c1
∑n

i=1
(
∑m

j=1
Pr(d(si, oj)))xi

s.t. ∀p ∈ R
2, c2

∑n

i=1
Pr(d(si, p))xi ≤ Rt

xi ∈ {0, 1} (i = 1, 2, . . . , n). (3)

In the above formulation, xi is the optimization vari-

able. We call a location p ∈ R
2 is “safe” if the EMR

intensity at this location is below the threshold Rt, i.e.,

c2
∑n

i=1 Pr(d(si, p))xi ≤ Rt, and is “danger” if otherwise.

To solve SCP, we are mainly facing the following chal-

lenges. First, the constraint in SCP is imposed on every point

on the plane. In other words, there is indeed an infinite number

of constraints, which makes the problem extremely difficult.

Second, even if we can reduce the number of constraints to a

limited number, we will show later that SCP is in the form of

a multidimensional 0/1 knapsack problem, which is NP-hard.

Theorem 3.1: SCP is NP-hard.

We omit the proof due to its simplicity and space limitation.

In the remainder of this paper, we show how to solve SCP with

a near optimal solution.

IV. A NEAR OPTIMAL SOLUTION

In this section, we will introduce our solution to SCP and

show that the algorithm has near optimal performance. We

will first depict the roadmap of our solution, and then present

the techniques we applied individually in details.

A. Principles and solution workflow

As we mentioned before, the major challenge of SCP is

the fact that SCP has an infinite number of constraints when

optimizing the objective function. To overcome this challenge,

we propose two techniques, namely constraint conversion and

constraint reduction, to reduce the number of constraints to

a limited and tractable number. By this means, SCP will be

reduced to a typical multidimensional 0/1 knapsack problem.

The constraint conversion is based on a simple observation.

Given a set of active chargers, there will be one point having

the maximal EMR intensity, call Maximal EMR Point (MEP)



Active charger set 

listing
SCP

Constraint 

derivation

MEP 

computation

Sec. IV-B

Sec. IV-C Sec. V

Sec. IV-D

Constraint 

reduction

Sec. IV-D

Multidimensional 0/1 

knapsack problem (MDK)

Fig. 3. SCP workflow

(if there is a set of points with the same maximal EMR

intensity, we can arbitrarily pick one of them without affecting

the correctness of our solution). When the MEP does not

exceed Rt and is safe, other locations will be safe too. If

the MEP is danger, the constraint is already violated. For

example in Fig. 2, suppose there are three chargers s1, s2,

and s3. Consider the active charger set of s1 and s2 (i.e.,

s3 is inactive). The MEP will be somewhere in between, say

location p. For this case, we only need to check whether p
exceeds Rt and derive a corresponding constraint. Note that

different active charger sets will have different MEPs, and

thus for SCP we shall check all the possible combinations

of the active charger sets, compute the MEPs under the

active chargers, and rewrite the constraints accordingly. With

n chargers, there will be 2n MEPs and 2n constraints, which is

sufficient. Nevertheless, for practical purposes, we find that the

number of effective constraints can be significantly reduced,

which will be introduced in a later subsection.

Fig. 3 depicts the workflow of our solution. Given an

instance of SCP, we first apply the constraint reduction to list

all effective active charger sets (Sec. IV-B), compute the MEP

under the charger set and derive the corresponding constraint

(Sec. IV-C). Then we employ constraint reduction approach

to reduce the number of obtained constraints (Sec. IV-D). As

such SCP is reformulated to a typical multidimensional 0/1

knapsack problem (MDK), we will give the approximation

algorithm for MDK in Sec. IV-D. Since the computation of

MEP is quite complex, we skip it in this section and describe

it separately in Sec. V.

B. Active charger set listing

In the active charger set listing, the input is n chargers and

their locations, and the output is a list of active charger sets

used to derive constraints. Intuitively, each possible charger set

will have its MEP and each MEP will lead to a corresponding

constraint. In the worst case, for n chargers there will be 2n

active charger sets and thus 2n constraints as well.

This is, however, neither practical nor necessary for further

processing. We desire a lightweight list of active charger sets

such that the computational overhead is minimized. We will

show that the constraints can be reduced to O(n24ρπD
2

) where

ρ is the charger deployment density, and D is the farthest

distance that a charger can reach in Eq. 1, which is much

less than 2n. As shown in Fig. 4, since every MEP must lie

in the covered region of a certain charger, we only have to

investigate the covered region for each charger. For example,

for the disk region covered by s1 with radius D, an MEP

within it can only be charged by chargers with distance less

than D. In other words, only the chargers with distance to s1
less than 2D, i.e. s2 and s3, are able to reach the MEP. The

number of these chargers is at most ρπ(2D)2. By enumerating

1
s

3
s

2
s

4
s

D
2D

Fig. 4. Illustration of active charger set listing

all possible active charger sets for the covered region of each

charger, we obtain in total O(n24ρπD
2

) constraints.

C. Constraint derivation, reduction and MDK

For each possible active charger set, we can derive the

constraint based on its MEP. In the next Sec. V, we will show

how to compute an MEP based on a given active charger set.

We here use the results directly.

Let Γ denote the lightweight list of effective active charger

sets we obtained in the last subsection, and S ∈ Γ be an active

charger set in Γ. Suppose the MEP of S is at the location p.

The constraint associated with S is

c2
∑

si∈S
Pr(d(si, p))xi ≤ Rt. (4)

The obtained constraints by this method can be reduced by

removing the following two types of constraints: (i) trivial

constraints that can be always satisfied, which means its

corresponding active charger set should never lead to an EMR

exceeding Rt; (ii) redundant constraints that can be safely

removed if at least one of the subsets of its corresponding

active charger set leads to an EMR exceeding Rt. For example,

if active charger set of s1 and s2 has already violated EMR

safety, it is needless to include the constraint of its superset

of s1, s2 and s3.

With the reduced constraints set, which we still denote by

Γ for convenience, SCP is reformulated as

(SCP) max c1
∑n

i=1
(
∑m

j=1
Pr(d(si, oj)))xi

s.t. ∀S ∈ Γ, c2
∑

si∈S
Pr(d(si, p))xi ≤ Rt

xi ∈ {0, 1} (i = 1, 2, . . . , n). (5)

This is a typical MDK problem [25]. When the number

of constraint |Γ| ≥ 2, there does not exist a FPTAS unless

P = NP [25]. We here apply an algorithm proposed in [33]

to obtain an approximation solution.

D. Algorithm description and results

In this section, we introduce our approximation algorithm

using pseudo-code and present the analytical results for the

algorithm, demonstrating its near optimal performance.

Algorithm 1 presents the algorithm pseudo-code. The input

of our algorithm is the set of chargers, devices and their

locations. The output of the algorithm is the binary indicator

xi to control whether a charger should be active or not. The

following theorem describes the performance of Algorithm 1.

Theorem 4.1: The time complexity of Algorithm 1 is

O(n4(ǫ−2 + ǫ−3/2n) + n(nǫ )
|Γ|)). The output of Algorithm

1 is a feasible solution of SCP, and outperforms the optimal

solution to SCP with a smaller EMR threshold (1− ǫ)Rt.

Proof: Its complete proof is available in [34].



Algorithm 1 Approximation Algorithm for SCP

INPUT A set of n chargers si ∈ S, i = 1, . . . , n, and a set of m
rechargeable devices oj ∈ O, j = 1, . . . ,m

OUTPUT Binary indicator xi ∈ {0, 1}, i = 1, . . . , n
1: for all charger si do
2: Let A be the disk area centered at si with radius 2D;
3: Identify all chargers within A;
4: for all active charger set S of chargers in A do
5: Compute MEP with error threshold ǫ/2 based on the active

charger set S;
6: Derive constraint based on the MEP using Eq. 4;
7: end for
8: end for
9: Conduct constraint reduction;

10: Reformulate SCP based on Eq. 5 and modify the EMR threshold
Rt to (1− ǫ/2)Rt;

11: Use Algorithm 1 in [33] with error threshold ǫ/2 to compute the
solution x1, . . . , xn of the reformulated SCP.

V. MEP COMPUTATION

In this section, we compute MEP for a given active charger

set. This is a major but difficult problem when solving SCP.

The challenges are mainly due to the fact that the objective

function e(p) in Eq. 2 is non-convex, and thus there is no

standard solution to be global optimal. In addition, the search

space of MEP is continuous, but the output is a single point.

Appropriate discretization method is needed to strike the

tradeoff between the computation precision and overhead.

In the remainder of this section, we first give the main

results, and present our approximation algorithm in details.

A. Main results

Our results can be summarized as follows.

Theorem 5.1: For any given small number ǫ, the solution

p# obtained by our algorithm and the optimal solution p∗

satisfies

(1− ǫ)e(p∗) ≤ e(p#) ≤ e(p∗).

The computational time complexity is O(ǫ−2n3 + ǫ−3/2n4),
and the space requirement is O(ǫ−1/2n log n) where n is the

number of chargers in the input active charger set.

This shows that the EMR of our solution point p# can be

arbitrarily close to that of the optimal one, and our algorithm is

thus a fully polynomial time approximation scheme (FPTAS).

B. Algorithm overview

The key issue in MEP computation is to approximate

the non-convex EMR function e(p) by convex ones so that

the problem is transferred into a traditional Fermat-Weber

problem [26]. During the approximation, we should guarantee

each step only introduces a bounded error such that the overall

algorithm performance can be bounded as well.

Fig. 5 depicts the workflow of our algorithm. We first use

a piecewise linear function ε(d) to approximate e(d) (Sec. V-

C). By this means, the covered area of a charger is partitioned

to many subareas. Subareas of different chargers will overlap

to further partition the area, and each partitioned subarea has

a convex objective function (Sec. V-D). Nevertheless, some

subareas may become a non-convex shape, and we thus expand

Piecewise linear 

approximation
MEP

Discretizing 

solution space

Non-convex 

subarea expansion

Sec. V-C Sec. V-D Sec. V-E Sec. V-F

Fermat-Weber problem 

with norm constraints

Fig. 5. MEP workflow

the subareas to convex ones in the third step (Sec. V-E). By

these means, the MEP computation problem can be transferred

into a traditional Fermat-Weber problem with norm constraints

(Sec. V-F). The MEP of the whole area is then among these

subarea MEPs and easy to find.

As the goal of each procedure is to convert MEP to the

Fermat-Weber problem with norm constraints, we present the

formal definition of this problem in advance as follows, in

order for a better understanding of these procedures.

Definition 5.1: Fermat-Weber problem with Norm Con-

straints (FWNC): Let S = {s1, s2, . . . , sn} be a set of points

in R
2, the Weber-Fermat problem is a facility problem that

aims to find the point p such that

min
∑

i∈n
wid(si, p)

s.t. d(si, p) ≤ Ci, i = 1, 2, . . . , n. (6)

where wi and Ci are constants.

In the remaining subsections of this paper, we will present

the detailed design of these procedures.

C. Piecewise linear approximation of e(d)

Essentially, we use multiple piecewise linear segments

ε(d) to approximate the EMR function e(d) (recall e(d) =
c2Pr(d)), trying to bound the approximation error ε(d)−e(d)
and the computational overhead.

The basic idea of the approximation ε(d) is illustrated in

Fig. 6. Let the vector L = {ℓ0, ℓ1, . . . , ℓK} be the end points

of K linear segments in an increasing sequence. The parameter

K is the number of segments that controls the approximation

error. In the example of Fig. 6, K is equal to 3. And in general

speaking, a larger K will result in a smaller approximation

error but introduces more computation overhead.

Definition 5.2: Setting ℓ0 = 0 and ℓK = D, the piecewise

approximation function ε(d) can be defined as

ε(d) =

{

−wkd+ φk, ℓk−1 ≤ d ≤ ℓk (k = 1, . . . ,K)

0, d > D
(7)

where φk = e(ℓk)ℓk+1−e(ℓk+1)ℓk
ℓk+1−ℓk

(φk > 0) and wk =

− e(ℓk+1)−e(ℓk)
ℓk+1−ℓk

(wk > 0) when k ≤ K, and otherwise

φk = wk = 0.

Definition 5.3: To bound the approximation error, we set

ℓk+1 (if the obtained ℓk+1 ≥ D, set K = k + 1, ℓk+1 = D)
sequentially based on ℓk (ℓ0 = 0) in Eq. 7 as

ℓk+1 =
1

4
(3x0−2ℓk+β+

√

(3x0 − 2ℓk + β)(3x0 + 6ℓk + 9β))−β
(8)

where β is a constant in Eq. 1, and x0 is one of the roots to

the following cubic equation

1− ǫ

(ℓk + β)
2 (x0 + β)3 − 3x0 + 2ℓk − β = 0

that satisfies x0 > ℓk.
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By these definitions, we have

Theorem 5.2: Setting ℓk by Eq. 8, we have the approxima-

tion errors as

e(d) ≤ ε(d) ≤
e(d)

1− ǫ
.

Theorem 5.3: If ǫ → 0, the number of linear segments K
is subject to
√
3
4 (1−

1
(1+D/β)2 )ǫ

−1/2 < K <
√
3
4 ((1 +D/β)2 − 1)ǫ−1/2.

In other words, we have K = Θ(ǫ−1/2).

D. Discretize solution space

In this part, we show how to discretize and confine the

search space for MEP. The goal is to show that with the

approximated EMR function ε(d), the MEP is reformulated

as an optimization problem with convex objective function.

By ε(d), the covered area of a charger s, denoted as As, is

partitioned to K concentric sub-areas denoted as As(k), k =
1, . . . ,K. Obviously given the active charger set S, there will

be at most K|S| concentric subareas which may overlap with

each other. By computational geometry [35], |S| chargers will

partition the whole plane to at most Z subarea faces where

Z ≤ (K|S|)2 −K|S|+ 2 ≤ K2|S|2.

An illustration of such subarea faces with three chargers is

depicted in Fig. 7. Note that we do not consider the area not

covered by any chargers as obviously there has no EMR and

MEP cannot be there.

By such partition, MEP for a given active charger set

becomes to find MEP from each subarea face, and among

these MEPs find the one with the largest EMR. As the

second step is straightforward, we here focus on the first

step. Denote a subarea face overlapped by several chargers as

F(κ) =
⋂

si∈S Asi(ki) where κ = (k1, k2, ...k|S|) is a vector

indicating the index of concentric subarea that shape the face.

In Fig.7, the face is shaped by s1’s second subarea, s2’s second

subarea, and s3’s third subarea, and thus it can be expressed

as F(κ) = As1(2)∩As2(2)∩As3(3) where κ = {2, 2, 3}. The

accumulated EMR approximation for a location p in F(κ) is

ε(p) =
∑

si∈S
(−wki

d(si, p) + φki
), p ∈ F(κ). (9)

Note wki
and φki

defined in Eq. 7 are both constants within the

concentric subarea Asi(ki). And therefore maximizing ε(p) is

equivalent to minimizing
∑

si∈S wki
d(si, p). In other words,

MEP of an active charger set can be reformulated as

max
∀F(κ)

{ε(p)|p = min
p∈F(κ)

∑

si∈S
wki

d(si, p)}. (10)

s1

s2

s3

As1(2)∩As2(2)∩As3(3)

As1(2) As3(3)

As2(2)

Fig. 7. Illustration of discretized charging area

Fig. 8. Illustration of area expansion

E. Area expansion

In the last subsection, we can find that MEP is reformulated

with a convex objective function
∑

si∈S wki
d(si, p), which

allows optimization method to apply. However, by partitions

in the last subsection the subarea face
⋂

si∈S Asi(ki) may

become non-convex (See the example in Fig. 7), which will

be dealt with in this subsection.

Definition 5.4: Denoting by Ωsi(ki) the minimal enclosing

disk of Asi(ki), Ωsi(ki) is indeed the union of all concentric

subareas no more than ki, i.e., Ωsi(ki) =
⋃

k≤ki
Asi(k). The

expanded area Λ(κ) for a subarea face F(κ) is defined as

Λ(κ) =
⋂

si∈S
Ωsi(ki) =

⋂

si∈S
(
⋃

k≤ki

Asi(k)) (11)

where κ = {k1, . . . , k|S|}.
Fig. 8 illustrates an example of area expansion based on the

example in Fig. 7.

Though F(κ) is expanded to Λ(κ), the solution to MEP

will not change, as the following theorem indicates.

Theorem 5.4: Suppose p∗ and p∗ are optimal solutions to

the reformulated MEP defined in Eq. 10 before and after area

expansion for each subarea, then ε(p∗) = ε(p∗).
Proof: Its complete proof is available in [34].

We emphasize that Theorem 5.4 is not an immediate ob-

servation, but a crucial conclusion based on the convexity and

monotonic decreasing properties of the EMR function as well

as the properties of our piecewise linear approximation.

We therefore further reformulate MEP in each subarea as

min
∑

si∈S
wki

d(si, p)

s.t. d(si, p) ≤ ℓki
, i = 1, 2, . . . , |S|. (12)

Notice that the above constraints stem from the definition of

expanded area Λ(κ). In the next subsection, we will show how

to solve it by a modified Fermat-Weber problem algorithm.

F. Fermat-Weber problem with norm constraints

Comparing our MEP in Eq. 12 and the Fermat-Weber

problem with norm constraints (FWNC) in Eq. 6 we find that

they are exactly the same. FWNC is a traditional problem

that has been widely studied [26]. There is, however, no

standard approximation solution for the problem. Therefore,

we tailor the approximation algorithm to unweighted Fermat-

Weber problem constrained to a polyhedron in [36] to our

case. The main difference between them lies in the boundary

search. The algorithm in [36] simply uses a binary search to
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find the optimal solution on the line segments of boundaries.

In contrast, our algorithm searches all the boundary arcs and

adopts Lagrange multiplier method to optimize the objective

function. We refer readers to [34] for details.

For our approximation algorithm, we have

Theorem 5.5: For any given small number ǫ, our algorithm

to FWNC can achieve (1 − ǫ) approximation ratio in deter-

ministic O(ǫ−1n+ ǫ−1/2n2) time and O(ǫ−1/2n log n) space.

VI. NUMERICAL RESULTS

In this section, we first conduct extensive simulations to

evaluate our proposed algorithms under different parameter

settings, and then reveal insights of the algorithm performance.

A. Evaluation setup

We assume that there are 12 chargers uniformly deployed

over a 100m∗100m 2D square area and 100 devices randomly

deployed in the area too. We set α = 100, β = 40 and D = 60
for the charging model, and c1 = 1 for the EMR model. For

the utility model, we simply set c2 = 0.001. Moreover, the

error threshold of the SCP algorithm is ǫ = 0.12, and the EMR

threshold is Rt = 150. Note that the result is averaged by 100

instances with different random seeds and device deployments.

B. Baseline setup

In Sec. VI-C1, we compare the MEP algorithm to the par-

ticle swarm optimization (PSO) with the number of particles

set to be 20 and the loop count be 200. In addition, we use

a fine-grained exhaustive search method to find the MEP on

the plane, and take its output as the optimal solution.

In Sec. VI-C2, VI-C3, VI-C4 and VI-D, we compare the

SCP solution to three different algorithms. The first is the op-

timal solution obtained by enumerating all possible activations

of chargers in SCP. Note that here the constraints in SCP are

outputs of the optimal solution for MEP used in Sec. VI-C1.

The second is the near optimal solution. It is identical to the

optimal solution except that its EMR threshold is set to be

(1− ǫ)Rt. The third is a newly designed greedy algorithm for

SCP whose constraints are derived based on our approximation

algorithm for MEP. Particularly, the greedy algorithm turns

on the charger that yields the maximum overall additional

utility for all devices while does not violate the EMR safety

requirement at each step. Such process repeats until no further

activation is possible in terms of the EMR safety.

C. Performance comparison

In this subsection, we examine the performance of our

approximation algorithm for MEP in terms of approximation

threshold ǫ, and that for SCP under various designs with

different system parameters including the threshold ǫ, the

charger number and the EMR threshold Rt.
1) Impact of the MEP threshold ǫ: To show the efficiency of

our MEP algorithm, we consider 50 chargers and 100 devices

uniformly deployed over a 500m∗500m 2D square area, and

investigate the performance of our approximation algorithm

for MEP and other two baseline algorithms in terms of the

MEP threshold ǫ. As illustrated in Fig. 9, the outputs of the

optimal solution and the PSO are 170.2 and 161.9 respectively

and remain constant. The maximal EMR computed by our

algorithm decreases with an increasing ǫ. It is always greater

than that of the PSO and is at most 4% smaller than that of

the optimal solution for 0.12 ≤ ǫ ≤ 0.3. This indicates that

the approximation bound (1− ǫ) strictly holds.
2) Impact of the SCP threshold ǫ: We proceed to examine

the influence of the SCP threshold ǫ on the overall utility and

plot the results in Fig. 10. As can be seen, the overall utility

of the optimal solution is constant and equal to 12. Our SCP

algorithm always outperforms that of the near optimal solution,

and the performance gap with the optimal solution diminishes

when ǫ decreases and is equal to 6.7% when ǫ = 0.1. This

observation validates our theoretical findings. In addition, the

greedy algorithm has the worst performance, which is roughly

34.6% below that of our SCP algorithm on average.
3) Impact of charger number: We are also interested in

the impact of the charger number on overall utility. Fig. 11

shows that all algorithms have the same performance when

the charger number is 4. This is because the activation of all

4 chargers will never damage the EMR safety and thus there is

no room for improvement. Besides, the overall utility of every

algorithm increases smoothly with the number of chargers,

and our SCP algorithm performs better than the near optimal

algorithm, and the performance difference from the optimal

one is at most 9.3%. The gap between the SCP algorithm and

the greedy algorithm can be as large as 26.4%.
4) Impact of EMR threshold Rt: We study the effect of

the EMR threshold Rt to the overall utility in this subsection.

As shown in Fig. 12, not surprisingly, the overall utility of

all considered solutions grows with an increasing Rt. The

performance of our SCP algorithm also outperforms the near

optimal solution. Overall, the optimal solution is nearly 7.7%
higher than that of our SCP algorithm, which in turn enjoys an

average performance gain of 14.9% over the greedy algorithm.
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Furthermore, when Rt exceeds 240, the activation of all 12

chargers is allowed for the sake of EMR safety, and thereby

the overall utility of the optimal solution reaches the maximum

18.4 and remains constant from then on. The same situation

occurs to the other three algorithms when Rt exceeds 270.

D. Insights

In this section, we explain why our proposed scheme can

obtain a high overall utility gain. We conduct a simulation

and observe the utility of each of 50 devices, as shown in

Fig. 13. Since the charging utility of a device is proportional

to the EMR there (please refer to their definitions in Sec.

III-A), the utility distribution of devices actually reflects the

EMR distribution for the locations of devices. Intuitively, if

all the EMRs at the locations of devices are quite close

to the EMR threshold Rt, which means that the EMRs are

balanced among these locations, the overall utility will be

high. From the top two sub-figures of Fig. 13, we can see that

the utility of all 50 devices are nearly uniform, and close to

150 and 132 respectively, which are the theoretical maximum

utility constrained by their EMR safety requirements. As for

the bottom two sub-figures, the greedy algorithm has utility

distribution with a higher variance. This is because the greedy

algorithm is conducted in such a way that it totally overlooks

the balance of EMR distribution. The EMRs at certain points

on the plane shall rise much quickly than others during the

greedy process of activating new chargers, and soon approach

Rt and disable further charger activation. Hence, its overall

achieved utility is low. Conversely, our SCP solution performs

in a reasonable manner so that the utility is balanced among

devices and thus is improved significantly.

VII. FIELD EXPERIMENTS

In this section, we conduct field experiments to validate our

theoretical results.

A. Experimental testbed

Fig. 14(a) shows the indoor experimental testbed. We utilize

8 chargers (TX91501 transmitters produced by Powercast [3])

which are deployed on the vertices and middle points of edges

of a 2.4m ∗ 2.4m square area. In addition, we place one

wireless rechargeable sensor node (see Fig. 14(b)) at the center

of the square area, and the other to the right side of the first

one with distance 0.4m. We use an RF field strength meter

(see Fig. 14(c)) to measure the intensity of EMR.

It is noteworthy that all the chargers are actually directional.

With reasonable precision, we model their charging region as a

sector with angle 60◦ and radius 4. The orientation of chargers

should thus greatly impact the EMR distribution of the space.

Suppose the chargers are numbered from top to bottom and

from left to right as shown in Fig. 14(a). We rotate chargers

from 1 to 8 such that the angles between their orientation

and the positive horizontal line are 296.56◦, 296.56◦, 243.44◦,
26.56◦, 153.44◦, 63.44◦, 116.56◦ and 116.56◦, respectively, in

order to enhance the charging efficiency in the square area.

The computer controls the power supply through a power

manager. The sensor nodes record their received power and

send the information to an access point (AP) connecting to

the computer. The AP then reports the data to the computer

for analysis and decision.

B. Adapted algorithm description

We make the following adaptations to our SCP algorithm

considering real situations. First, we adjust our SCP algorithm

to the case under directional chargers. This can be done by

modifying our MEP algorithm. We omit the details to save

space. Second, to alleviate the error incurred by modeling of

directional chargers, environmental variation, etc., we let the

two sensors sample the charging power from each charger at

the beginning of the algorithm. Then we perform our SCP

algorithm based on the sampled values.

C. Experimental results

As Fig. 15 illustrates, we compare the computed utility

based on sampling with real utility under three different values

of Rt. Note that in this figure, Node 1 refers to the node

located at the center of the area and Node 2 refers to the

other. We can see that the computed utility of both nodes is

always larger than the real utility, but the difference between

them is quite small and no more than 7.5%. This observation

supports the power additivity assumption and the effectiveness

of our sampling approach. Furthermore, the gap between these

two solutions tends to increase when the utility grows. This is

likely due to the charging property of the capacitors in sensors.

Suppose the EMR threshold Rt is 125µW/cm2, we turn

on charger 2, 4, 5, 6, 7 and 8 according to the output of our

adapted algorithm. Then we measure the EMR values at 9 ∗ 9
grid points of the square region, and plot them in Fig. 16 to

visualize the EMR distribution of the area in an approximation

manner. We observe that the EMR peaks at the location of

charger 5 and is equal to 116.7µW/cm2 and thus less than

Rt. This fact confirms the correctness of our SCP algorithm.

VIII. RELATED WORK

In this section, we briefly review works regarding scenarios

with stationary chargers. Recently, Intel developed the wireless

identification and sensing platform (WISP) by integrating

RFID tags with sensing and computing components. The RFID

tags can be wirelessly charged by readers. Buettner et al.

explored this technology to recognize human activities in [9],

and highlighted applications such as elderly care in [10].

In [11], Powercast developed a wireless power platform to

work with wireless sensor network. Their objective was to help
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monitor temperature and humidity at a zoo without disrupting

the animal exhibit. This company also offered a solution

for data center environmental monitoring by constructing a

network of chargers [12]. He et al. [13] studied the energy

provisioning problem, i.e., how to deploy chargers to provide

sufficient energy to static/mobile devices in wireless recharge-

able sensor networks. In [14], Wicaksono et al. considered

the power interference when allocating frequency bands to

adjacent stationary chargers. All the above works overlooked

EMR safety.

IX. CONCLUSION

In this paper, we have studied the problem of maximizing

the charging utility under the constraints of EMR safety.

Considering the complexity of the original problem, we broke

it down into two related subproblems, i.e., SCP and MEP. For

MEP, we proposed a series of novel techniques to transform it

into a classical problem FWNC. These techniques combined

with our tailored approximation algorithm for FWNC form

a (1 − ǫ) solution. Based on the powerful results of MEP,

we presented a near optimal solution to SCP. To evaluate the

effectiveness of our solution, we conducted both extensive sim-

ulations and field experiments. All of their results corroborated

our analytical findings. This solution could be incorporated

into many systems to harness the detrimental impact of EMR.
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