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Abstract—As battery-powered mobile devices become more
popular and energy hungry, wireless power transfer technology
receives intensive interests, as it allows the power to be trans-
ferred from a charger to ambient devices wirelessly. The existing
studies mainly focus on the power transfer efficiency but overlook
the health impairments caused by RF exposure. In this paper,
we study the Safe Charging Problem (SCP) of scheduling power
chargers so that more energy can be received while no location
in the field has electromagnetic radiation (EMR) exceeding a
given threshold R;. We prove that SCP is NP-hard and propose a
solution which provably outperforms the optimal solution to SCP
with a relaxed EMR threshold (1 — ¢)R;. Testbed results based
on 8 Powercast TX91501 chargers validate our results. Extensive
simulation results show that the gap between our solution and
the optimal one is only 6.7% when ¢ = 0.1, while a naive greedy
algorithm is 34.6% below our solution.

I. INTRODUCTION

As battery-powered mobile and portable devices become
more popular and energy-hungry, energy conservation and
scavenging schemes are increasingly important for the device
usability. Among all such schemes, wireless power transfer
technology [1] attracts intensive research and industry interest
due to its convenience in applications. With this technology,
energy can be transferred wirelessly from an energy storage
to consuming devices such as RFIDs [2], sensors [3], cell
phones [4], laptops [5], vehicles [6] and unmanned planes [7].
According to a recent report, the wireless power transfer
market is expected to grow to US$23.7 billion in 2015 [8].

In existing studies, researchers focused more on the energy
charging efficiency and ubiquitousness, targeting at the mini-
mal number of active chargers with more charging coverage
(e.g., [9]-[20]). In practice, however, this is far from enough.
Besides the charging efficiency, a more critical issue is the
safety of the electromagnetic radiation (EMR). Though no
study results have generally provided clear evidence of a
relationship between EMR and the health impairments, there
have been some statistically significant findings in certain
positive cases. Exposure to high EMR [21] has been widely
identified as a threat to human health. Its potential risks include
but not limited to tissue impairment [22], brain tumor [23] and
mental diseases [24]. Sec. II will give a more comprehensive
survey on EMR safety issues and related regulations in the
worldwide. A validated wireless charging scheme must comply
with these regulations and guarantee the EMR safety in the
field. No location should have the EMR value exceeding

certain safety threshold.

With this practical and critical concern, in this paper, we
propose and study the safe charging problem, attempting to
strike the best tradeoff between the charging efficiency and
EMR safety. Given a set of wireless power chargers and
rechargeable devices, we are seeking the charger scheduling
scheme so that the devices can obtain more power, while no
location exceeds the EMR safety threshold.

Safe charging is a quite challenging problem which in
general is NP-hard. The challenges are mainly due to the
fact that the EMR constraints are imposed on every point in
the field, which inevitably results in an infinite number of
constraints. In addition, as we will show in later sections,
the objective function is a non-convex one, which prevents
the classical optimization method from applying directly. To
overcome these challenges, we design constraint conversion
and reduction techniques and apply approximation approaches,
which enable us to transfer the problem to a traditional
multidimensional 0/1 knapsack problem [25] and a Fermat-
Weber problem [26], i.e., to find the optimal activation set
of chargers maximizing the overall charging power under a
limited number of constraints, and to find the point with the
maximum EMR for a given active charger set. The constraints
of the first problem are actually derived based on the outputs
of the second problem.

The main contributions of this paper are as follows:

o To the best of our knowledge, this is the first work that

considers charging efficiency under EMR safety concern.
We formulate the problem as Safe Charging Problem
(SCP), and prove that it is NP-hard.

o To deal with the problem, we design a series of novel
techniques to transfer the problem to two traditional prob-
lems, namely a multidimensional 0/1 knapsack problem
and a Fermat-Weber problem. The techniques include
constraint conversion and reduction, bounded EMR func-
tion approximation, area discretization and expansion,
and a tailored Fermat-Weber algorithm.

o We prove that for any given small number e, our solution
outperforms the optimal solution to SCP with a relaxed
EMR threshold (1 —¢)R;, where R, is the original EMR
threshold.

o To evaluate the performance of our algorithm, we build
a testbed composed of 8 Powercast TX91501 chargers.
Experimental results show that the maximal EMR in the



field is 116.7 uW/em?, which is just below the safety
threshold of 125 W /cm?. We also conduct comprehen-
sive simulations and the gap between our solution and the
optimal one is only 6.7% when € = 0.1, while a naive
greedy algorithm is 34.6% below our solution.

The remainder of the paper is organized as follows. In Sec.
II, we elaborate on the motivation of this work. In Sec. III, we
give preliminaries and a formal definition of the SCP problem.
We introduce a near optimal solution to SCP in Sec. IV based
on the theoretical results of MEP computation in the next
section. Then, we present an approximation algorithm to MEP
computation in Sec. V. Sec. VI and Sec. VII present extensive
simulations and testbed experiments to verify our theoretical
results. Sec. VIII reviews related work and Sec. IX concludes.

II. MOTIVATION

In this section, we give a review of the risk of RF exposures
and present some related regulations.

For the risk of RF exposures, there has been a significant
body of research that focuses on the biological effects of RF
signals on human body. For example, Olteanu et al. [22]
investigated the harmful effect of metallic implant heating
resulted from EMR around, which may lead to impairment of
tissues. And it is reported that heating of tissue that exceeds 1
degree centigrade may interfere with behavioral and biological
functions [27]. Gandhi et al. [28] found that children’s heads
absorb over two times of RF than adults, and absorption of
the skull’s bone marrow can be ten times greater than adults.
Tissues of the fetus, such as the central nervous system, seem
especially vulnerable to temperature rises caused by high EMR
in various time windows, particularly during organogenesis
[29]. Changes on gene/protein expression by RF exposure are
also investigated. Leszczynskis group performed a pilot study
on volunteers and showed that mobile phone radiation might
alter protein expression in human skin cells [30]. Nittby et
al. [31] found that a large number of genes were altered at
hippocampus and cortex using four exposed and four control
animals. Though no actual experiments have been conducted
concerning the potential harm to people, a plenty of clinical
studies such as [23] showed an increased risk of high EMR
exposure for brain tumors. Besides, the link between RF expo-
sure and mental diseases has also been confirmed. Experiments
done on mice [24] showed that EMR causes transient and
cumulative impairments in spatial and non-spatial memory.

Concerns about adverse consequences of EMR exposure
have resulted in the establishment of exposure limits. These
limits are codified in Title 47 of the Code of Federal Reg-
ulations (CFR) in the United States and Hygienic Standard
for Environmental Electromagnetic Waves GB9175-88 [32] in
China, and also contained in standards published by the In-
ternational Commission on Non-Ionizing Radiation Protection
(ICNIRP) [21] in most of Europe. For instance, the maximum
allowed power density for frequency 915 M H z, the commonly
used frequency band for wireless power transfer, by CFR,
GB9175-88 and ICNIRP are 610 uW/cm?, 40 uW/cm? and
457.5 uW/cm?, respectively.
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III. PROBLEM STATEMENT

Given the above concerns of the impairments of EMR, a
desired charging scheme should strike a balance between the
EMR limit and charging efficiency. In this paper, we assume all
the chargers and rechargeable devices are static and deployed
in fixed, known locations. In addition, we consider a simplified
charger scheduling model in which chargers can be only
in either of the on/off states. More complicated deployment
schemes (e.g., mobile chargers) and scheduling models (e.g.,
adjustable charger power) are left for future work.

Ideally, the charging scheme should on one hand maximize
the charging efficiency so that more charging energy can be
harvested by the rechargeable devices, and on the other hand
ensure the safety of the field by limiting the intensity of
EMR at every position in the field. To achieve this goal, we
will formulate the problem and propose our solutions in the
remainder of this paper. In this section, we will first give
the system and charging model, and then provide the formal
problem statement. In the last of this section, we will present
the main challenges we face when addressing the problem.

A. System and charging model

Assume there is a set of n identical stationary wireless
power chargers S = {s1,82,...,8,} deployed on a two-
dimensional plane, and we have a set of m rechargeable
devices O = {01,09,...,0,} in the field too. The devices
are capable of harvesting the wireless power originated from
chargers to maintain their normal working.

In general, both the wireless charging power and the EMR
intensity are related to the energy field strength. The received
power P.(d) by a device can be quantified by an empirical
model [13], i.e.,

%7 d S D
Po(d) = { D) (1)
0, d>D

where d is the distance from the charger to the receiver, and
« and [ are known constants determined by hardware of the
charger and the receiver and the environment. Because of the
hardware constraint, the energy field far away from the charger
will be too small to be received by a node, and we use D to
denote the farthest distance a charger can reach.

For the charging, we assume the wireless power from
multiple chargers to a receiver is additive [13], and define
the charging utility to be proportional to the charging power,



TABLE I
NOTATIONS

Symbol [ Meaning

si, S | Charger 4, charger set
0, O | Device j, device set
P.(d) | Received power from distance d

D | Farthest distance a charger can reach

d(si,0;) | Distance from charger s; to device o;
d(si,p) | Distance from charger s; to point p
u(oj) | Charging utility of device o,
u(s;) | Charging utility provided by charger s;
e(d), e(p) | EMR from distance d, EMR at point p

x; | Binary indicator denotes whether charger s; is
active or not
R; | Hard threshold of EMR safety

I' | List of effective active charger sets

u(oj) =c1 Y Pr(d(si, 05))
=1

where d(s;, 0;) is the distance from the charger s; to the device
04, and ¢y is a predetermined constant.

Similarly, for all rechargeable devices, a charger s; can
provide charging utility as

For the intensity of EMR, intuitively it is proportional to
the received power there. To verify this intuition, we conduct
field experiment studies. As shown in Fig. 1, the EMR is nearly
proportional to the received power, which can be modeled by
e(d) = ca P (d) where d is the distance and ¢5 is the constant
to capture the linear relation. Assuming EMR is also additive,
the accumulated EMR at a location p is thus

e(p) =Y eld(si,p) =c2 Y Prd(si,p)). (2

s; €8 s; €8

Some symbols and notations used in this paper are summa-
rized in Table 1.

B. Problem statement

We start with the following decision problem: given an
active charger set .S, is the EMR safety violated? To answer
this question, we have to examine every point on the plane to
ensure no place will have the EMR exceeding the hard thresh-
old of EMR safety, which we denote by R;. Mathematically,
we can express the decision problem as follows

2
Vp € R%, ¢ ZSiES P.(d(si,p)) < Ry.

Let z; be a binary indicator that denotes whether charger
s; is active or not. For an active charger set specified by z;,
the above inequality can be rewritten as follows

2 n . )
VpeR*, ¢ Zi:l P(d(si,p))z; < Ry.
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Fig. 2. An illustrative example of constraint conversion. For the set of
active chargers s1 and sa, there will be a maximal EMR point (MEP) located
between s1 and s2, and a corresponding constraint. Different active charger
sets will have different MEPs

This inequality actually serves as the constraint of our
problem. On the other hand, our optimization goal is to
maximize the overall charging utility from all the chargers,
namely, " | u(s;)z;. The Safe Charging Problem (SCP) can
thus be defined as follows

SCP)  max e (3 Prld(si o))

st. VpeR? ¢ Zi:l P.(d(si,p))z; < Ry
x; € {0,1} (i=1,2,...,n). 3

In the above formulation, z; is the optimization vari-
able. We call a location p € R? is “safe” if the EMR
intensity at this location is below the threshold R, i.e.,
Ca Z?Zl P.(d(s;,p))x; < Ry, and is “danger” if otherwise.

To solve SCP, we are mainly facing the following chal-
lenges. First, the constraint in SCP is imposed on every point
on the plane. In other words, there is indeed an infinite number
of constraints, which makes the problem extremely difficult.
Second, even if we can reduce the number of constraints to a
limited number, we will show later that SCP is in the form of
a multidimensional 0/1 knapsack problem, which is NP-hard.

Theorem 3.1: SCP is NP-hard.

We omit the proof due to its simplicity and space limitation.
In the remainder of this paper, we show how to solve SCP with
a near optimal solution.

IV. A NEAR OPTIMAL SOLUTION

In this section, we will introduce our solution to SCP and
show that the algorithm has near optimal performance. We
will first depict the roadmap of our solution, and then present
the techniques we applied individually in details.

A. Principles and solution workflow

As we mentioned before, the major challenge of SCP is
the fact that SCP has an infinite number of constraints when
optimizing the objective function. To overcome this challenge,
we propose two techniques, namely constraint conversion and
constraint reduction, to reduce the number of constraints to
a limited and tractable number. By this means, SCP will be
reduced to a typical multidimensional 0/1 knapsack problem.

The constraint conversion is based on a simple observation.
Given a set of active chargers, there will be one point having
the maximal EMR intensity, call Maximal EMR Point (MEP)
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(if there is a set of points with the same maximal EMR
intensity, we can arbitrarily pick one of them without affecting
the correctness of our solution). When the MEP does not
exceed R; and is safe, other locations will be safe too. If
the MEP is danger, the constraint is already violated. For
example in Fig. 2, suppose there are three chargers si, So,
and s3. Consider the active charger set of s; and ss (i.e.,
s3 is inactive). The MEP will be somewhere in between, say
location p. For this case, we only need to check whether p
exceeds R; and derive a corresponding constraint. Note that
different active charger sets will have different MEPs, and
thus for SCP we shall check all the possible combinations
of the active charger sets, compute the MEPs under the
active chargers, and rewrite the constraints accordingly. With
n chargers, there will be 2 MEPs and 2" constraints, which is
sufficient. Nevertheless, for practical purposes, we find that the
number of effective constraints can be significantly reduced,
which will be introduced in a later subsection.

Fig. 3 depicts the workflow of our solution. Given an
instance of SCP, we first apply the constraint reduction to list
all effective active charger sets (Sec. IV-B), compute the MEP
under the charger set and derive the corresponding constraint
(Sec. IV-C). Then we employ constraint reduction approach
to reduce the number of obtained constraints (Sec. IV-D). As
such SCP is reformulated to a typical multidimensional 0/1
knapsack problem (MDK), we will give the approximation
algorithm for MDK in Sec. IV-D. Since the computation of
MEP is quite complex, we skip it in this section and describe
it separately in Sec. V.

B. Active charger set listing

In the active charger set listing, the input is n chargers and
their locations, and the output is a list of active charger sets
used to derive constraints. Intuitively, each possible charger set
will have its MEP and each MEP will lead to a corresponding
constraint. In the worst case, for n chargers there will be 2"
active charger sets and thus 2™ constraints as well.

This is, however, neither practical nor necessary for further
processing. We desire a lightweight list of active charger sets
such that the computational overhead is minimized. We will
show that the constraints can be reduced to O(n247P%) where
p is the charger deployment density, and D is the farthest
distance that a charger can reach in Eq. 1, which is much
less than 2. As shown in Fig. 4, since every MEP must lie
in the covered region of a certain charger, we only have to
investigate the covered region for each charger. For example,
for the disk region covered by s; with radius D, an MEP
within it can only be charged by chargers with distance less
than D. In other words, only the chargers with distance to s;
less than 2D, i.e. so and s3, are able to reach the MEP. The
number of these chargers is at most pr(2D)?. By enumerating

Fig. 4. Tllustration of active charger set listing

all possible active charger sets for the covered region of each
P 2 .
charger, we obtain in total O(n2%7P") constraints.

C. Constraint derivation, reduction and MDK

For each possible active charger set, we can derive the
constraint based on its MEP. In the next Sec. V, we will show
how to compute an MEP based on a given active charger set.
We here use the results directly.

Let I' denote the lightweight list of effective active charger
sets we obtained in the last subsection, and S € I be an active
charger set in I'. Suppose the MEP of S is at the location p.
The constraint associated with S is

CQZ Szap))xz < R;. €]

The obtained constraints by this method can be reduced by
removing the following two types of constraints: (i) trivial
constraints that can be always satisfied, which means its
corresponding active charger set should never lead to an EMR
exceeding R;; (ii) redundant constraints that can be safely
removed if at least one of the subsets of its corresponding
active charger set leads to an EMR exceeding R;. For example,
if active charger set of s; and s has already violated EMR
safety, it is needless to include the constraint of its superset
of S1, S2 and S3.

With the reduced constraints set, which we still denote by
I" for convenience, SCP is reformulated as

(SCP)  max ¢ ZZ X Z P,(d(si,0)))x;
st VS erl, CQZ d(si,p))x; < Ry
xie{o,l} (2:1,2,...,n). (5)

This is a typical MDK problem [25]. When the number
of constraint [I'| > 2, there does not exist a FPTAS unless
P = NP [25]. We here apply an algorithm proposed in [33]
to obtain an approximation solution.

D. Algorithm description and results

In this section, we introduce our approximation algorithm
using pseudo-code and present the analytical results for the
algorithm, demonstrating its near optimal performance.

Algorithm 1 presents the algorithm pseudo-code. The input
of our algorithm is the set of chargers, devices and their
locations. The output of the algorithm is the binary indicator
x; to control whether a charger should be active or not. The
following theorem describes the performance of Algorithm 1.

Theorem 4.1: The time complexity of Algorithm 1 is
O(n*(e72 + €3/2n) + n(2)I'N)). The output of Algorithm
1 is a feasible solution of SCP, and outperforms the optimal
solution to SCP with a smaller EMR threshold (1 — €)R;.

Proof: Tts complete proof is available in [34]. [ ]



Algorithm 1 Approximation Algorithm for SCP

INPUT A set of n chargers s; € S,% = 1,...,n, and a set of m
rechargeable devices 0; € O,j =1,...,m

OUTPUT Binary indicator z; € {0,1},i=1,...,n

1: for all charger s; do

2 Let A be the disk area centered at s; with radius 2D;
3:  Identify all chargers within A;
4
5

for all active charger set .S of chargers in A do
Compute MEP with error threshold ¢/2 based on the active
charger set S
Derive constraint based on the MEP using Eq. 4;
end for
: end for
: Conduct constraint reduction;
: Reformulate SCP based on Eq. 5 and modify the EMR threshold
Rt to (1 — E/Q)Rt;
11: Use Algorithm 1 in [33] with error threshold €/2 to compute the
solution z1, ..., x, of the reformulated SCP.

—

V. MEP COMPUTATION

In this section, we compute MEP for a given active charger
set. This is a major but difficult problem when solving SCP.
The challenges are mainly due to the fact that the objective
function e(p) in Eq. 2 is non-convex, and thus there is no
standard solution to be global optimal. In addition, the search
space of MEP is continuous, but the output is a single point.
Appropriate discretization method is needed to strike the
tradeoff between the computation precision and overhead.

In the remainder of this section, we first give the main
results, and present our approximation algorithm in details.

A. Main results

Our results can be summarized as follows.

Theorem 5.1: For any given small number €, the solution
p* obtained by our algorithm and the optimal solution p*
satisfies

(1—ee(p”) < e(p®) < e(p").

The computational time complexity is O(e~?n> 4 e=3/?n),
and the space requirement is O(e’l/ Znlogn) where n is the
number of chargers in the input active charger set.

This shows that the EMR of our solution point p# can be
arbitrarily close to that of the optimal one, and our algorithm is
thus a fully polynomial time approximation scheme (FPTAS).

B. Algorithm overview

The key issue in MEP computation is to approximate
the non-convex EMR function e(p) by convex ones so that
the problem is transferred into a traditional Fermat-Weber
problem [26]. During the approximation, we should guarantee
each step only introduces a bounded error such that the overall
algorithm performance can be bounded as well.

Fig. 5 depicts the workflow of our algorithm. We first use
a piecewise linear function £(d) to approximate e(d) (Sec. V-
C). By this means, the covered area of a charger is partitioned
to many subareas. Subareas of different chargers will overlap
to further partition the area, and each partitioned subarea has
a convex objective function (Sec. V-D). Nevertheless, some
subareas may become a non-convex shape, and we thus expand

Sec. V-C Sec. V-D Sec. V-E Sec. V-F
Piccewise linear Discretizi N, Fermat-Weber problem
MEP ; A TR . 5
ation solution space subarea with norm constraints
Fig. 5. MEP workflow

the subareas to convex ones in the third step (Sec. V-E). By
these means, the MEP computation problem can be transferred
into a traditional Fermat-Weber problem with norm constraints
(Sec. V-F). The MEP of the whole area is then among these
subarea MEPs and easy to find.

As the goal of each procedure is to convert MEP to the
Fermat-Weber problem with norm constraints, we present the
formal definition of this problem in advance as follows, in
order for a better understanding of these procedures.

Definition 5.1: Fermat-Weber problem with Norm Con-
straints (FWNC): Let S = {s1, Sa,...,8,} be a set of points
in R?, the Weber-Fermat problem is a facility problem that
aims to find the point p such that

minz w;d(s;,p)

iEN
st d(si,p) <Cii=1,2,...,n. (6)

where w; and C; are constants.
In the remaining subsections of this paper, we will present
the detailed design of these procedures.

C. Piecewise linear approximation of e(d)

Essentially, we use multiple piecewise linear segments
(d) to approximate the EMR function e(d) (recall e(d) =
¢oP.(d)), trying to bound the approximation error e(d) — e(d)
and the computational overhead.

The basic idea of the approximation e(d) is illustrated in
Fig. 6. Let the vector L = {{y,{1,...,{x} be the end points
of K linear segments in an increasing sequence. The parameter
K is the number of segments that controls the approximation
error. In the example of Fig. 6, K is equal to 3. And in general
speaking, a larger K will result in a smaller approximation
error but introduces more computation overhead.

Definition 5.2: Setting {o = 0 and L = D, the piecewise
approximation function £(d) can be defined as

—wpd + ¢, L1 <d <l (k=1,...,K)
e(d) =

0, d>D
L)l L YA (7)
where ¢ = e(ly) ;:Jlr?fgkkﬂ) k (¢k > 0) and wp =
_W(wk > 0) when k < K, and otherwise
k+1 k
k= W = 0.

Definition 5.3: To bound the approximation error, we set
Liy1 (if the obtained U1 > D, set K =k+ 1, {11 = D)
sequentially based on (i, (Lo = 0) in Eq. 7 as
Zk_;,_l = i(3x0—2€k+ﬁ+ \/(3230 — 20 + ﬂ)(?)wo + 64 + 9ﬂ))—ﬁ

®)
where 3 is a constant in Eq. 1, and x is one of the roots to
the following cubic equation

(121+_;)2(x°+ﬁ)33x0+%k5_0
k

that satisfies xq > lk.
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By these definitions, we have

Theorem 5.2: Setting (). by Eq. 8, we have the approxima-

tion errors as
e(d) < e(d) < L9
1—e€
Theorem 5.3: If ¢ — 0, the number of linear segments K
is subject to

V3 1
T (= arppe)e
In other words, we have K = ©(e~1/?).

Illustration of piecewise linear approximation

12 < K < Y3((14 D/B)% —1)e V2,

D. Discretize solution space

In this part, we show how to discretize and confine the
search space for MEP. The goal is to show that with the
approximated EMR function ¢(d), the MEP is reformulated
as an optimization problem with convex objective function.

By £(d), the covered area of a charger s, denoted as A, is
partitioned to K concentric sub-areas denoted as Aq(k), k =
1,..., K. Obviously given the active charger set S, there will
be at most K| S| concentric subareas which may overlap with
each other. By computational geometry [ chargers will
partition the whole plane to at most Z subarea faces where

Z < (K|S))* - K|S| +2 < K?|S|*.

An illustration of such subarea faces with three chargers is
depicted in Fig. 7. Note that we do not consider the area not
covered by any chargers as obviously there has no EMR and
MEP cannot be there.

By such partition, MEP for a given active charger set
becomes to find MEP from each subarea face, and among
these MEPs find the one with the largest EMR. As the
second step is straightforward, we here focus on the first
step. Denote a subarea face overlapped by several chargers as
F(k) =, es As; (ki) where k = (k1, ka2, ...k|5|) is a vector
indicating the index of concentric subarea that shape the face.
In Fig.7, the face is shaped by s;’s second subarea, so’s second
subarea, and s3’s third subarea, and thus it can be expressed
as F(k) = As, (2)NA,,(2)NAg, (3) where k = {2,2,3}. The
accumulated EMR approximation for a location p in F (k) is

ep) = Zsies(—wkid(si,p) + ¢k,).p € F(K). (9

Note wy, and ¢y, defined in Eq. 7 are both constants within the
concentric subarea As, (k;). And therefore maximizing ¢(p) is
equivalent to minimizing ) g wg,d(si,p). In other words,
MEP of an active charger set can be reformulated as

(10)

max{e = min wi, d(si,
VF (k) {( peEF (K )Z i p

Asy(2)NAs:(2)NAs5(3)

Fig. 7. Ilustration of discretized charging area

QD =D
Fig. 8. Illustration of area expansion

E. Area expansion

In the last subsection, we can find that MEP is reformulated
with a convex objective function . g wy,d(s;,p), which
allows optimization method to apply. However, by partitions
in the last subsection the subarea face (1, g As, (ki) may
become non-convex (See the example in Fig. 7), which will
be dealt with in this subsection.

Definition 5.4: Denoting by Qs, (k;) the minimal enclosing
disk of As,(k;), Qs,(k;) is indeed the union of all concentric
subareas no more than k;, i.e., s, (ki) = U<y, As, (k). The
expanded area \(rk) for a subarea face F (k) is deﬁned as

= Q.tk)= (U 4Ask) @D

s; €S s, €S k<k;

where k = {ki,..., kg }.

Fig. 8 illustrates an example of area expansion based on the
example in Fig. 7.

Though F(k) is expanded to A(k), the solution to MEP
will not change, as the following theorem indicates.

Theorem 5.4: Suppose p* and p* are optimal solutions to
the reformulated MEP defined in Eq. 10 before and after area
expansion for each subarea, then £(p*) = ¢(p*).

Proof: Tts complete proof is available in [34]. [ ]

We emphasize that Theorem 5.4 is not an immediate ob-
servation, but a crucial conclusion based on the convexity and
monotonic decreasing properties of the EMR function as well
as the properties of our piecewise linear approximation.

We therefore further reformulate MEP in each subarea as

min Z wy, d(si, p)
s, €S

st d(si,p) <UL, i=1,2,...,|5] (12)

Notice that the above constraints stem from the definition of
expanded area A(x). In the next subsection, we will show how
to solve it by a modified Fermat-Weber problem algorithm.

F. Fermat-Weber problem with norm constraints

Comparing our MEP in Eq. 12 and the Fermat-Weber
problem with norm constraints (FWNC) in Eq. 6 we find that
they are exactly the same. FWNC is a traditional problem
that has been widely studied [26]. There is, however, no
standard approximation solution for the problem. Therefore,
we tailor the approximation algorithm to unweighted Fermat-
Weber problem constrained to a polyhedron in [36] to our
case. The main difference between them lies in the boundary
search. The algorithm in [36] simply uses a binary search to
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find the optimal solution on the line segments of boundaries.
In contrast, our algorithm searches all the boundary arcs and
adopts Lagrange multiplier method to optimize the objective
function. We refer readers to [34] for details.

For our approximation algorithm, we have

Theorem 5.5: For any given small number ¢, our algorithm
to FWNC can achieve (1 — €) approximation ratio in deter-
ministic O(e~'n+ e /?n?) time and O(e~'/?>nlogn) space.

VI. NUMERICAL RESULTS

In this section, we first conduct extensive simulations to
evaluate our proposed algorithms under different parameter
settings, and then reveal insights of the algorithm performance.

A. Evaluation setup

We assume that there are 12 chargers uniformly deployed
over a 100 m=*100 m 2D square area and 100 devices randomly
deployed in the area too. We set « = 100, 5 = 40 and D = 60
for the charging model, and ¢; = 1 for the EMR model. For
the utility model, we simply set ca = 0.001. Moreover, the
error threshold of the SCP algorithm is € = 0.12, and the EMR
threshold is R; = 150. Note that the result is averaged by 100
instances with different random seeds and device deployments.

B. Baseline setup

In Sec. VI-C1, we compare the MEP algorithm to the par-
ticle swarm optimization (PSO) with the number of particles
set to be 20 and the loop count be 200. In addition, we use
a fine-grained exhaustive search method to find the MEP on
the plane, and take its output as the optimal solution.

In Sec. VI-C2, VI-C3, VI-C4 and VI-D, we compare the
SCP solution to three different algorithms. The first is the op-
timal solution obtained by enumerating all possible activations
of chargers in SCP. Note that here the constraints in SCP are
outputs of the optimal solution for MEP used in Sec. VI-CI.
The second is the near optimal solution. It is identical to the
optimal solution except that its EMR threshold is set to be
(1 —€)R;. The third is a newly designed greedy algorithm for
SCP whose constraints are derived based on our approximation
algorithm for MEP. Particularly, the greedy algorithm turns
on the charger that yields the maximum overall additional
utility for all devices while does not violate the EMR safety
requirement at each step. Such process repeats until no further
activation is possible in terms of the EMR safety.

Number
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C. Performance comparison

In this subsection, we examine the performance of our
approximation algorithm for MEP in terms of approximation
threshold ¢, and that for SCP under various designs with
different system parameters including the threshold e, the
charger number and the EMR threshold R;.

1) Impact of the MEP threshold e: To show the efficiency of
our MEP algorithm, we consider 50 chargers and 100 devices
uniformly deployed over a 500 m * 500 m 2D square area, and
investigate the performance of our approximation algorithm
for MEP and other two baseline algorithms in terms of the
MEP threshold e. As illustrated in Fig. 9, the outputs of the
optimal solution and the PSO are 170.2 and 161.9 respectively
and remain constant. The maximal EMR computed by our
algorithm decreases with an increasing e. It is always greater
than that of the PSO and is at most 4% smaller than that of
the optimal solution for 0.12 < e < 0.3. This indicates that
the approximation bound (1 — €) strictly holds.

2) Impact of the SCP threshold e: We proceed to examine
the influence of the SCP threshold e on the overall utility and
plot the results in Fig. 10. As can be seen, the overall utility
of the optimal solution is constant and equal to 12. Our SCP
algorithm always outperforms that of the near optimal solution,
and the performance gap with the optimal solution diminishes
when e decreases and is equal to 6.7% when ¢ = 0.1. This
observation validates our theoretical findings. In addition, the
greedy algorithm has the worst performance, which is roughly
34.6% below that of our SCP algorithm on average.

3) Impact of charger number: We are also interested in
the impact of the charger number on overall utility. Fig. 11
shows that all algorithms have the same performance when
the charger number is 4. This is because the activation of all
4 chargers will never damage the EMR safety and thus there is
no room for improvement. Besides, the overall utility of every
algorithm increases smoothly with the number of chargers,
and our SCP algorithm performs better than the near optimal
algorithm, and the performance difference from the optimal
one is at most 9.3%. The gap between the SCP algorithm and
the greedy algorithm can be as large as 26.4%.

4) Impact of EMR threshold R;: We study the effect of
the EMR threshold R; to the overall utility in this subsection.
As shown in Fig. 12, not surprisingly, the overall utility of
all considered solutions grows with an increasing R;. The
performance of our SCP algorithm also outperforms the near
optimal solution. Overall, the optimal solution is nearly 7.7%
higher than that of our SCP algorithm, which in turn enjoys an
average performance gain of 14.9% over the greedy algorithm.
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Furthermore, when R; exceeds 240, the activation of all 12
chargers is allowed for the sake of EMR safety, and thereby
the overall utility of the optimal solution reaches the maximum
18.4 and remains constant from then on. The same situation
occurs to the other three algorithms when R; exceeds 270.

D. Insights

In this section, we explain why our proposed scheme can
obtain a high overall utility gain. We conduct a simulation
and observe the utility of each of 50 devices, as shown in
Fig. 13. Since the charging utility of a device is proportional
to the EMR there (please refer to their definitions in Sec.
III-A), the utility distribution of devices actually reflects the
EMR distribution for the locations of devices. Intuitively, if
all the EMRs at the locations of devices are quite close
to the EMR threshold R;, which means that the EMRs are
balanced among these locations, the overall utility will be
high. From the top two sub-figures of Fig. 13, we can see that
the utility of all 50 devices are nearly uniform, and close to
150 and 132 respectively, which are the theoretical maximum
utility constrained by their EMR safety requirements. As for
the bottom two sub-figures, the greedy algorithm has utility
distribution with a higher variance. This is because the greedy
algorithm is conducted in such a way that it totally overlooks
the balance of EMR distribution. The EMRs at certain points
on the plane shall rise much quickly than others during the
greedy process of activating new chargers, and soon approach
R; and disable further charger activation. Hence, its overall
achieved utility is low. Conversely, our SCP solution performs
in a reasonable manner so that the utility is balanced among
devices and thus is improved significantly.

VII. FIELD EXPERIMENTS

In this section, we conduct field experiments to validate our
theoretical results.

A. Experimental testbed

Fig. 14(a) shows the indoor experimental testbed. We utilize
8 chargers (TX91501 transmitters produced by Powercast [3])
which are deployed on the vertices and middle points of edges
of a 2.4m % 2.4m square area. In addition, we place one
wireless rechargeable sensor node (see Fig. 14(b)) at the center
of the square area, and the other to the right side of the first
one with distance 0.4m. We use an RF field strength meter
(see Fig. 14(c)) to measure the intensity of EMR.

It is noteworthy that all the chargers are actually directional.
With reasonable precision, we model their charging region as a

sector with angle 60° and radius 4. The orientation of chargers
should thus greatly impact the EMR distribution of the space.
Suppose the chargers are numbered from top to bottom and
from left to right as shown in Fig. 14(a). We rotate chargers
from 1 to 8 such that the angles between their orientation
and the positive horizontal line are 296.56°, 296.56°, 243.44°,
26.56°, 153.44°, 63.44°, 116.56° and 116.56°, respectively, in
order to enhance the charging efficiency in the square area.

The computer controls the power supply through a power
manager. The sensor nodes record their received power and
send the information to an access point (AP) connecting to
the computer. The AP then reports the data to the computer
for analysis and decision.

B. Adapted algorithm description

We make the following adaptations to our SCP algorithm
considering real situations. First, we adjust our SCP algorithm
to the case under directional chargers. This can be done by
modifying our MEP algorithm. We omit the details to save
space. Second, to alleviate the error incurred by modeling of
directional chargers, environmental variation, etc., we let the
two sensors sample the charging power from each charger at
the beginning of the algorithm. Then we perform our SCP
algorithm based on the sampled values.

C. Experimental results

As Fig. 15 illustrates, we compare the computed utility
based on sampling with real utility under three different values
of R;. Note that in this figure, Node 1 refers to the node
located at the center of the area and Node 2 refers to the
other. We can see that the computed utility of both nodes is
always larger than the real utility, but the difference between
them is quite small and no more than 7.5%. This observation
supports the power additivity assumption and the effectiveness
of our sampling approach. Furthermore, the gap between these
two solutions tends to increase when the utility grows. This is
likely due to the charging property of the capacitors in sensors.

Suppose the EMR threshold R; is 125 uW/cm?, we turn
on charger 2, 4, 5, 6, 7 and 8§ according to the output of our
adapted algorithm. Then we measure the EMR values at 9 %9
grid points of the square region, and plot them in Fig. 16 to
visualize the EMR distribution of the area in an approximation
manner. We observe that the EMR peaks at the location of
charger 5 and is equal to 116.7 uW/cm? and thus less than
R;. This fact confirms the correctness of our SCP algorithm.

VIII. RELATED WORK

In this section, we briefly review works regarding scenarios
with stationary chargers. Recently, Intel developed the wireless
identification and sensing platform (WISP) by integrating
RFID tags with sensing and computing components. The RFID
tags can be wirelessly charged by readers. Buettner et al.
explored this technology to recognize human activities in [9],
and highlighted applications such as elderly care in [10].
In [11], Powercast developed a wireless power platform to
work with wireless sensor network. Their objective was to help
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monitor temperature and humidity at a zoo without disrupting
the animal exhibit. This company also offered a solution
for data center environmental monitoring by constructing a
network of chargers [12]. He et al. [13] studied the energy
provisioning problem, i.e., how to deploy chargers to provide
sufficient energy to static/mobile devices in wireless recharge-
able sensor networks. In [14], Wicaksono et al. considered
the power interference when allocating frequency bands to
adjacent stationary chargers. All the above works overlooked
EMR safety.

IX. CONCLUSION

In this paper, we have studied the problem of maximizing
the charging utility under the constraints of EMR safety.
Considering the complexity of the original problem, we broke
it down into two related subproblems, i.e., SCP and MEP. For
MEP, we proposed a series of novel techniques to transform it
into a classical problem FWNC. These techniques combined
with our tailored approximation algorithm for FWNC form
a (1 — €) solution. Based on the powerful results of MEP,
we presented a near optimal solution to SCP. To evaluate the
effectiveness of our solution, we conducted both extensive sim-
ulations and field experiments. All of their results corroborated
our analytical findings. This solution could be incorporated
into many systems to harness the detrimental impact of EMR.
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